
Schema Referencing in PDS4 Labels
There are several ways to tie schema files to the XML documents they define in order to validate the
documents and take advantage of schema-aware editors; but in general, the methods used to locate
schema files are not compatible with each other. In other words, XML editors need to pick the
method they want to use, and then use it consistently. Trying to change methods generally involves
changing software settings and/or editing the schema references in the XML files.

The PDS4 schema library is relatively complex and interlinked. That is, the PDS4 dictionary
schemas - the ones that define the core PDS and discipline name spaces as well as the mission
dictionaries - cross-reference each other. In order for any particular software environment, then, to
be able to resolve all schema references reliably, it will be rather important that the same technique
be used in all dictionary schemas and all label files, regardless of source. This must also be done in
an environment-agnostic way, or you will have to edit schema files each time you try to run validation
on a new machine, or even in a new directory in the same disk space.

This page describes how to set up your PDS4 labels to be consistent with the PDS schema library
and remove environmental dependence from your schema references as far as possible. This
method is strongly recommended to PDS4 data preparers. In fact, your node consultant may insist
on it in order to have consistent and reliable validation of your deliveries.

Preliminaries
PDS-controlled namespaces will almost always be defined by a pair of related schema files: an XML
Schema (.xsd) file to define the class structures and general data types; and a Schematron (.sch) file
to define enumerated value lists and conditional structure relationships (e.g., you must use PDS
attribute A or PDS attribute B, but not both). You will need to tie your labels to both of these files. The
Schematron file will be referenced in the XML prolog; the XSD file will be referenced in the document
root tag (<Product_Observational>, for example).

Note: Schema File vs. Namespace
URIs (Uniform Resource Identifiers) are used to identify both namespaces and the files that define
those namespaces. While it is easy, given the notational conventions described below, to conflate
these two things, they are and remain different concepts to your software. The namespace URI is a
logical identifier - it refers to the concept of the dictionary, irrespective of minor version changes.
That is, version 1.3 of the PDS core namespace, for example, has exactly the same URI as version
1.5 of the same namespace. (Version 2.0, though, would have a different URI.)

The schema URIs, however, must resolve to physical files. It is the schema URIs that control the
version of the namespace actually applied to the label for editing assistance and for validation.

The practical upshot for PDS4 labels is that when you are referencing a schema file, your URI will
contain a file name. When you are referencing a namespace, it will not. And in order to allow for
reasonable transportability, file system references will be replaced by URI references that can be
resolved through an XML Catalog file.

Schematron (SCH) References
Schematron references are placed in the prolog of the document following the XML declaration.
Schematron files are referenced by xml-model processing instructions. (The prolog is everything
before the document root tag; processing instructions are delimited by the character pairs <? and ?
> - same as for the XML declaration.)

The xml-model processing instruction is the focus of the W3C standard "Associating Schemas with
XML Documents". It exists to provide an explicit link between an XML document and a schema that

defines its valid content. PDS uses the xml-model processing instruction to associate Schematron-
type schema files, specifically, with a label. (The XSD schema files are associated
through schemaLocation declarations.)

If your software (your editor, for example) has implemented the "Associating Schemas" standard,
then you should use one of these two forms for xml-model in your PDS4 labels:

<?xml-model href="http://pds.nasa.gov/pds4/pds/v1/PDS4_PDS_1201.sch" schematypens="http://
purl.oclc.org/dsdl/schematron"?>

if this is compatible with you processing environment, or:

<?xml-model href="http://pds.nasa.gov/pds4/pds/v1/PDS4_PDS_1201.sch"?>

if it is not. Here's what is going on:

href="http://pds.nasa.gov/pds4/pds/v1/PDS4_PDS_1201.sch"
href is required, and to be compliant with the "Associating Schemas" standard, it must be a URI that
maps to a physical file. However, because the value of href is a URI, editors that implement the XML
Catalog standard along with the schema association standard should use any relevant XML catalog
entries to help resolve the href reference. You should keep that in mind when formulating your XML
catalog entries. Also, note that the href value must be a single URI, so you will need to include
one xml-model statement for every Schematron file you wish to associate with the label. Start
each xml-model statement on a new line to avoid confusion and trouble down the line.
schematypens="http://purl.oclc.org/dsdl/schematron"
The optional schematypens attribute gives any software that cares to check a hint about what kind of
schema it can expect to find when it resolves the href URI to a physical file. The namespace shown
here is the official namespace URI for ISO Schematron - the version used in PDS4 dictionaries.
There are other flavors of Schematron out there, and they are not compatible or interchangeable
with ISO Schematron, so if you are working in an environment that has several different Schematron
implementations available, it is important to set this value, and your options/preferences, for ISO
Schematron. In the absence of schematypens, a robust processor would read the schema file to
discover its type and act accordingly. Less robust environments might signal a warning if they
determine the schema type is not what they expected, or fail if it is not something they can process.

There are other optional pseudo-attributes for xml-model that are unlikely, at least as of this writing,
to show up in PDS4 labels, but they do at least have a format definition in the "Associating
Schemas" standard. The ones you are most likely to see include:
• type: The value should be a content-type descriptor like those you would find in an HTTP

header.

Note for All Users: You must provide a separate <?xml-model> statement
for each Schematron file you want to use in validation. Including multiple href values in a
single xml-model statement leads to undefined behavior.

Note for Eclipse Users: The Eclipse editor and its Schematron plug-in have a couple of
significant limitations:

1. The href value must be a physical file location relative to the label in the current disk space.
Web references and URIs will not resolve, even with XML catalog file entries available, and
absolute file references don't seem to work, either. This is a major drawback with Eclipse if
you need schema references that are environment-independent.

2. The presence of a schematypens pseudo-attribute will be flagged as an error.

• charset: The value specifies a character set using standard abbreviations like "US-ASCII" or
"UTF-8".

• title: The value is the title of the schema document being referenced by href.

XML Schema (XSD) References
It is possible to reference .xsd files from various places in your label, but editing and debugging
these references tends to be a lot easier when you've got them all in one place. So we recommend
you put all your .xsd file references in a schemaLocation list inside the document root tag. For PDS4
labels, the document root tag will be one of the <Product_*> tags.

xsi:schemaLocation
The xsi:schemaLocation attribute that we will be using inside the document root tag belongs to
the XMLSchema-instance namespace, which is in turn defined by the XML Schema standard.
There are two elements of this name space you may encounter regularly in PDS labels:
the xsi:schemaLocation in the document root tag, and the xsi:nil property that you may see or use in
setting some label values to nil in particular circumstances.

Note that, in order to reference elements from the XMLSchema-instance namespace, you have to
tell your validators that you plan to do so. You do this the same way you tell your validators about
other namespaces (see "Namespace References", below). You don't usually have to provide a
defining schema file reference for the XMLSchema-instance namespace in
you xsi:schemaLocation list, though, because if your software implements that standard, then the
definition will be coded into the system already.

To link to the relevant .xsd files, you assign a string value to xsi:schemaLocation. This string contains
pairs of (namespace URI, schema file URI) strings (no parentheses or commas in the actual value).
You can use blanks and line breaks freely within the value to keep things visually organized for
yourself, fortunately. Here's a typical list of (namespace, schema) pairs from a prototype label
developed for a Deep Impact spectral image observation:

xsi:schemaLocation=
 "http://pds.nasa.gov/pds4/pds/v1 http://pds.nasa.gov/pds4/pds/v1/PDS4_PDS_1201.xsd
 http://pds.nasa.gov/pds4/disp/v1 http://pds.nasa.gov/pds4/disp/v1/
PDS4_DISP_1100.xsd
 http://pds.nasa.gov/pds4/sp/v1 http://pds.nasa.gov/pds4/sp/v1/PDS4_SP_1100.xsd
 http://pds.nasa.gov/pds4/geom/v0 http://pds.nasa.gov/pds4/geom/v0/
PDS4_GEOM_0520.xsd
 http://pds.nasa.gov/pds4/sbn/v0 http://pds.nasa.gov/pds4/sbn/v0/sbnDD_0100.xsd
 http://pds.nasa.gov/pds4/mission/epoxi/v0 http://pds.nasa.gov/pds4/mission/epoxi/v0/
epoxiDD_0100.xsd"

The string in the first column, above, is the URI for the namespace. The string in the second column
is a URI that will, with the help of either a web connection or an XML Catalog file, resolve to a
physical file that can be loaded into the editor or validator. The first pair refers to the core PDS
namespace. Here's what is going on:

http://pds.nasa.gov/pds4/pds/v1
This is the URI of version 1 of the PDS core namespace. This string will be the same in every PDS4
label you see until there's a Version 2.0.0.0 of the Information Model.
http://pds.nasa.gov/pds4/pds/v1/PDS4_PDS_1201.xsd

This reference points to the file that contains the definition of the core PDS namespace that will be
used for the elements in this label. These sorts of URIs for PDS4 schema files will resolve to a
physical file if you simply reference it via the HTTP protocol. In other words, if you put the string
"http://pds.nasa.gov/pds4/pds/v1/PDS4_PDS_1201.xsd" into your web browser, you will see the
schema file displayed. That is not a requirement of the URI standard, but rather a convenience that
PDS has chosen to implement for its PDS4 schema collection.

Some things to note for your xsi:schemaLocation list:
• The PDS core namespace definition should come first. This is because the other PDS-controlled

namespaces reference the PDS core name space, but might be referencing a different version of
it - most likely an earlier version. You cannot have two simultaneous definitions of the same
namespace in force at the same time, and if your software encounters multiple definitions it will
typically take the first and warn you about later ones (some programs will let you change that
behavior through preferences, so you should check for that option when you first configure a
new editor or validator). You should not depend on discipline dictionaries loading the version of
the core schema you want to use. For a start, it makes it difficult to get the right value into the
required <information_model_version> element.

• You should reference all the discipline namespace dictionaries you are using in the label in
your xsi:schemaLocation list. The file name for these PDS-controlled namespaces contains the
encoded version number, which as of this writing is the only way to indicate which version of a
discipline dictionary supports the structures in the label. For discipline and mission dictionaries,
the differences between versions can be significant and incompatible.

• You should use the HTTP-style URI for the file references shown above for your schema files
wherever possible, because these references can be easily trapped and resolved by simple XML
Catalog file entries. This, in turn, makes it possible to validate the same label in different
environments without having to change anything in the label itself, and that tends to make life
easier for everyone involved in designing, editing, and validating labels. (Note that
while Eclipse users can make use of this method for XML Schema files, they will not have this
luxury with their Schematron references until someone writes a better plug-in.)

Finally, note that you do have to put all the schema location information in the same string; having
more than one xsi:schemaLocation in your root tag is an error.

Namespace References
Every tag in your label must be associated with exactly one, specific namespace. You may, if you
like, designate one namespace as the default namespace for your tags. If you designate the PDS
core namespace as your default, for example, then when you want to use tags from another
namespace, like a mission or discipline dictionary, you will have to identify that new namespace.
There are several methods for doing this, all of which should yield the same result for validation
purposes (unlike methods for referencing physical schema files described above).

Here we will describe two common methods that seem to be both simple and human reader-friendly
for use in PDS4 labels.

Namespace Abbreviation Prefixes
In your document root tag, you can declare which namespaces you plan to reference and assign
each a unique abbreviation via xmlns assignments. Here is a set of assignments that would
correspond to the xsi:schemaLocation namespaces of the previous section:

 <Product_Observational
 xmlns = "http://pds.nasa.gov/pds4/pds/v1"
 xmlns:disp = "http://pds.nasa.gov/pds4/disp/v1"

http://pds.nasa.gov/pds4/pds/v1/PDS4_PDS_1201.xsd

 xmlns:sp = "http://pds.nasa.gov/pds4/sp/v1"
 xmlns:geom = "http://pds.nasa.gov/pds4/geom/v0"
 xmlns:sbn = "http://pds.nasa.gov/pds4/sbn/v0"
 xmlns:epoxi= "http://pds.nasa.gov/pds4/mission/epoxi/v0"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="...">
 ...
 </Product_Observational>

Here's what is going on:

xmlns = "http://pds.nasa.gov/pds4/pds/v1"
This defines the default namespace for the label as the PDS4 core namespace. Any tag without a
prefix that doesn't declare a new default namespace (as described below) must be defined by the
PDS4 core schema, which is in the xsi:schemaLocation list, of course. If you wanted to define a prefix
for this namespace as well, you could - by using the syntax described next. You are not required to
have a default namespace.
xmlns:disp = "http://pds.nasa.gov/pds4/disp/v1"
This associates the abbreviation disp with the Display Discipline Dictionary namespace. Now if you
want to use an element from that dictionary, you can prefix the tag name with "disp:". So, for
example, the <Display_Direction> class would look like this:

 <disp:Display_Direction>
 <disp:horizontal_display_axis>Sample</disp:horizontal_display_axis>
 <disp:horizontal_display_direction>Left ot Right</disp:horizontal_display_direction>
 <disp:vertical_display_axis>Line</disp:vertical_display_axis>
 <disp:vertical_display_direction>Bottom to Top</disp:vertical_display_direction>
 </disp:Display_Direction>

Couple of things to note:
• You must specify the namespace prefix for all tags that come from that namespace, even if they

are inside other tags that already have the namespace prefix attached.
• You must specify the namespace prefix on both opening and closing tags. XML is a real stickler

that way.
• There must be a one-to-one correspondence between namespaces and abbreviations (including

the null abbreviation for the default namespace, if you have one). You cannot assign "disp" as
the abbreviation for two different namespaces, nor can you define both "disp" and "d" to both be
abbreviations for the Display Dictionary namespace.

• If the PDS core namespace is not the default namespace for your label, you must include the
PDS core namespace prefix on your document root tag as well as all other tags from the core
namespace. So, if your <Product_Observational> tag contains this:
xmlns:pds="http://pds.nasa.gov/pds4/pds/v1"

then your document root tag should be "pds:Product_Observational", not just "Product_Observational"

One final note: The abbreviation you designate to use for each namespace is, technically, at your
discretion. You can, as far as the XML standards are concerned, use totally non-standard
abbreviations for XMLSchema-instance, for the PDS4 core namespace, or for any or all of the

http://sbndev.astro.umd.edu/wiki/Schema_Referencing_in_PDS4_Labels#Changing_Default_Namespaces

dictionary namespaces you reference. But you shouldn't. The standard abbreviations for PDS-
controlled namespaces are reserved by PDS permanently to be available as unique abbreviations
that will help users immediately recognize label content and provenance. Deliberately undermining
these associations with arbitrary namespace abbreviations is not a good thing for archive stability.
Expect that PDS nodes and reviewers will take a dim view of that sort of thing.

Changing the Default Namespace
If prefixing tag names with namespace abbreviations annoys you, you can change the default
namespace at any point in your label by including an xmlns assignment inside any tag. The new
default will last until you close that tag, and you can change default namespaces again in nested
tags if you like.

As an example, let's assume that we have defined the PDS core namespace as our default
namespace in our <Product_Observational> document root, as in the previous examples, but have
not defined any namespace abbreviations for things like the Display Discipline Dictionary. Now if we
want to use the <Display_Direction> class, we need to change the default namespace to that of the
Display Dictionary. We do that with an xmlns assignment within the <Display_Direction> tag:

 <Display_Direction xmlns="http://pds.nasa.gov/pds4/disp/v1">
 <horizontal_display_axis>Sample</horizontal_display_axis>
 <horizontal_display_direction>Left ot Right</horizontal_display_direction>
 <vertical_display_axis>Line</vertical_display_axis>
 <vertical_display_direction>Bottom to Top</vertical_display_direction>
 </Display_Direction>

The new default expires at the corresponding </Display_Direction> tag, and the default namespace
reverts to whatever it was before the opening tag.

The usual couple of notes:
• The tag containing the xmlns assignment must be defined in the given namespace. So this, for

example:
<Mission_Area xmlns="http://pds.nasa.gov/pds4/mission/epoxi/v0">

will fail validation because the Mission_Area tag allowed at that point in a PDS4 label is defined in the
PDS core namespace, not the EPOXI mission namespace. In order to change the default
namespace to the mission namespace, you must do so from a tag defined in the EPOXI mission
dictionary. (This is where wrapper classes earn their keep.)
• You still need the xsi:schemaLocation assignment to tell software where to find the namespace

definition. And it should be at the top of the file rather than here, to make it easier to debug
validation issues and to better document the label content in a simple, consistent manner.

• Using this method you may find yourself typing the same namespace reference several times in
a single file. This introduces an opportunity for subtle error if and when there is more than one
major version of a namespace defined. It will be awhile before this happens for PDS-controlled
namespaces, but missions may be more liberal with their major version changes. In general, you
should not be referencing multiple major versions of the same namespace - but XML validators
are unlikely to be able to catch this condition and flag it for you. Type carefully if you are working
with a dictionary that has multiple major versions, and never include a xsi:schemaLocation for
more than one major version of a namespace directly in you document root tag.

Abbreviations vs. Changing Defaults
As far as reasonably modern software is concerned, these two methods for identifying namespaces
are completely equivalent. XML parsers should return the same result regardless of how the
namespace for any given tag is identified. So which method you prefer will depend on things like
personal aesthetics or which is easier to use with your schema-aware editor.

This equivalence extends to the parsers involved in the Schematron validation step. Both of these
methods work equally well in schema-aware editors that support Schematron validation.

You should avoid using both methods in the same label, though. As far as XML standards and
parsers are concerned, you can - but it is visually and logically confusing for users. So try not to.

